Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38475423

RESUMO

The impact of Xylella fastidiosa (Xf) subsp. pauca on the environment and economy of Southern Italy has been devastating. To restore the landscape and support the local economy, introducing new crops is crucial for restoring destroyed olive groves, and the almond tree (Prunus dulcis Mill. D. A. Webb) could be a promising candidate. This work focused on the resistance of the cultivar "Filippo Ceo" to Xf and evaluated its physiological and molecular responses to individual stresses (drought or pathogen stress) and combined stress factors under field conditions over three seasons. Filippo Ceo showed a low pathogen concentration (≈103 CFU mL-1) and a lack of almond leaf scorch symptoms. Physiologically, an excellent plant water status was observed (RWC 82-89%) regardless of the stress conditions, which was associated with an increased proline content compared to that of the control plants, particularly in response to Xf stress (≈8-fold). The plant's response did not lead to a gene modulation that was specific to different stress factors but seemed more indistinct: upregulation of the LEA and DHN gene transcripts by Xf was observed, while the PR transcript was upregulated by drought stress. In addition, the genes encoding the transcription factors (TFs) were differentially induced by stress conditions. Filippo Ceo could be an excellent cultivar for coexistence with Xf subps. pauca, confirming its resistance to both water stress and the pathogen, although this similar health status was achieved differently due to transcriptional reprogramming that results in the modulation of genes directly or indirectly involved in defence strategies.

2.
Plants (Basel) ; 12(14)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37514309

RESUMO

"Bois noir" disease associated with 'Candidatus Phytoplasma solani' seriously compromises the production and survival of grapevines (Vitis vinifera L.) in Europe. Understanding the plant response to phytoplasmas should help to improve disease control strategies. Using a combined metabolomic and transcriptomic analysis, this work, therefore, investigated the phytoplasma-grapevine interaction in red cultivar Sangiovese in a vineyard over four seasonal growth stages (from late spring to late summer), comparing leaves from healthy and infected grapevines (symptomatic and symptomless). We found an accumulation of both conjugate and free salicylic acids (SAs) in the leaves of 'Ca. P. solani'-positive plants from early stages of infection, when plants are still asymptomatic. A strong accumulation of gentisic acid (GA) associated with symptoms progression was found for the first time. A detailed analysis of phenylpropanoids revealed a significant accumulation of hydroxycinnamic acids, flavonols, flavan 3-ols, and anthocyanin cyanidin 3-O-glucoside, which are extensively studied due to their involvement in the plant response to various pathogens. Metabolomic data corroborated by gene expression analysis indicated that phenylpropanoid biosynthetic and salicylic acid-responsive genes were upregulated in 'Ca. P. solani-positive plants compared to -negative ones during the observed period.

3.
Int J Mol Sci ; 23(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35887334

RESUMO

Durum wheat is strongly affected by climatic constraints such as high temperatures and drought, which frequently lead to yield reduction. Damages due to high temperatures are related to plant thermotolerance, a trait determined by two components: basal and acquired thermotolerance. In this study, the effect of drought and heat stress imposed singularly or sequentially was investigated in ten durum wheat cultivars (cvs) at the physiological and molecular level. The traits analyzed were cell membrane stability, relative water content, proline content, and expression level of several genes for heat shock proteins (HSPs). Our results indicate that drought priming can induce the acquisition of thermotolerance in most cultivars already classified as able to acquire thermotolerance by heat pre-treatment. Proline accumulation was correlated to cell membrane stability, meaning that the most thermotolerant cvs were able to accumulate higher levels of proline. Acquired thermotolerance is also due to the activation of HSP gene expression; similarly, pre-treatment with water stress was able to activate HSPs expression. The results reported indicate that water stress plays an important role in inducing thermotolerance, comparable to mild heat stress pre-treatment. This is the first report on the effect of drought stress on the acquisition of thermotolerance.


Assuntos
Secas , Termotolerância , Desidratação , Proteínas de Choque Térmico/metabolismo , Prolina/metabolismo , Estresse Fisiológico/genética , Triticum/metabolismo
4.
Biology (Basel) ; 11(1)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35053110

RESUMO

Xylella fastidiosa (Xf) subsp. pauca "De Donno" is the etiological agent of "Olive Quick Decline Syndrome" (OQDS) on olive trees (Olea europaea L.); the presence of the bacterium causes xylem vessel occlusions inducing a drought stress and the development of leaf scorch symptoms, which may be worsened by water shortage in summer. In order to evaluate how the two stress factors overlap each other, the carbohydrate content and the expression patterns of genes related to carbohydrate metabolism have been evaluated in two olive cvs trees (Cellina di Nardò, susceptible to Xf, and Leccino, resistant to Xf) reporting transcriptional dynamics elicited by Xf infection, drought, or combined stress (drought/Xf). In the Xf-susceptible Cellina di Nardò plants, Xf and its combination with drought significantly decrease total sugars compared to control (-27.0% and -25.7%, respectively). In contrast, the Xf-resistant Leccino plants show a more limited reduction in sugar content in Xf-positive conditions (-20.1%) and combined stresses (-11.1%). Furthermore, while the amount of glucose decreases significantly in stressed Cellina di Nardò plants (≈18%), an increase was observed in Leccino plants under drought/Xf combined stresses (+11.2%). An opposite behavior among cvs was also observed for sucrose, as an accumulation of the disaccharide was recorded in stressed Leccino plants (≈37%). The different response to combined stress by Xf-resistant plants was confirmed considering genes coding for the sucrose or monosaccharide transporter (OeSUT1, OeMST2), the cell wall or vacuolar invertase (OeINV-CW, OeINV-V), the granule-bound starch synthase I (OeGBSSI) and sucrose synthase (OeSUSY), with a higher expression than at least one single stress (e.g., ≈1-fold higher or more than Xf for OeMST2, OeINV-CW, OeINV-V, OeGBSSI). It is probable that the pathways involved in drought stress response induce positive effects useful for pathogen resistance in cv Leccino, confirming the importance of investigating the mechanisms of cross-talk of biotic and abiotic responses.

5.
Plant Physiol Biochem ; 170: 307-315, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954565

RESUMO

The Mediterranean area is characterised by unfavorable environmental conditions such as heat stress and drought responsible for yield loss of crops like durum wheat, widely cultivated in this area. The response of plants to stressing environments is mediated by activation of a complex gene network, strictly related to the genetic background. Among the genes induced by drought, those coding for proteins acting as key regulators of signal transduction are of great interest. Characterization of these genes is a crucial point to understand their potential roles in plant stress response, also in view of their possible use in molecular breeding. In this work we have characterised a Triticum durum gene, named TdDRG1, in two commercial cultivars, Primadur and Svevo, differing for drought stress resistance. TdDRG1 codes for a putative transcription factor belonging to the VPS72/YL-1 family, highly conserved in plants and animals. The expression analysis indicates that this gene is expressed at higher level in roots of the resistant cultivar Svevo, than in the susceptible Primadur. The gene structure was determined in both cultivars and the regulatory activity of 5' upstream regions was analyzed by transient expression analysis using tobacco protoplasts. Dissimilar expression level of TdDRG1 in the two cultivars can be explained by the differences observed in gene structure. In particular, differences in 5' upstream regions could account for contrasting ability to cope with drought of the two cultivars. The data obtained in this study provide indications for further insight into the molecular basis of differences in drought stress response.


Assuntos
Secas , Triticum , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Raízes de Plantas , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Triticum/genética
6.
Plant Physiol Biochem ; 156: 115-124, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32927153

RESUMO

Wheat is one of the most important food crops in the world for human consumption, like all plants it is exposed to environmental stresses including high temperatures. The deleterious effect of high temperatures negatively affects plant growth and development, leading to reduced viability and yield. These effects can be reduced by improvement of thermotolerance through innovative breeding strategies, based on the expansion of the genetic pool available, by exploring important genetic functions from wheat wild progenitors. Improving the genetic thermotolerance characteristics of wheat requires greater understanding of genetic bases of thermotolerance, through identification of high temperature stress related genes. A good source of new useful alleles is given by Aegilops species characterized by thermotolerant habits. In this study we have classified as thermotolerant or thermosensitive, on the basis of physiologic tests, some accessions of wheat wild relative species belonging to Aegilops and Triticum genera. A thermotolerant accession of Aegilops umbellulata (AUM5) was selected, subjected to different thermal treatments and analyzed at transcriptional level. By differential display reverse transcriptase polymerase chain reaction (DDRT-PCR), we investigated modulation of gene expression elicited by heat treatments. This approach allowed the identification of various transcript-derived fragments (TDFs) produced by AUM5 in response to different thermal treatments. The functions of the inducible unique genes in the molecular determination of thermotolerance process are discussed.


Assuntos
Aegilops/genética , Aegilops/fisiologia , Termotolerância , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Temperatura Alta , Fenótipo , Melhoramento Vegetal , Triticum/genética
7.
Plants (Basel) ; 8(11)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652681

RESUMO

Due to global climate change, complex combinations of stresses are expected to occur, among which the interaction between pathogens and drought stress may have a significant effect on growth and yield. In this study, the Xylella fastidiosa (Xf)-resistant cultivar Leccino and the susceptible one Cellina di Nardò were subjected to (a) individual drought stress, (b) Xf infection and (c) combination of both stress conditions. Here we report the physiological response to stresses in water content in leaves and the modulation in the expression level of seven genes responsive to plant water status and pathogen infection. In Xf-resistant plants, higher expression levels are reported for genes belonging to ROS-scavenging systems and for genes involved in pathogen stress (pathogenesis-related, PR, and leucine-rich repeat genes, LRR-RLK). However, PR and LRR-RLK were not further induced by water deficit. Interestingly, the genes related to drought response (aquaporin, PIP2.1, dehydration responsive element binding, DREB, and dehydrin, DHN), which induction was higher in Cellina di Nardò compared to Leccino during drought stress, was poorly induced in Xf-susceptible plants when Xf occur. Conversely, DHN was induced by Xf presence in Leccino. These results were consistent with observations on water content. Indeed, response was similar in Leccino regardless kind of stress or combination, whereas a strong reduction was observed in Xf-susceptible plants infected by Xf or in presence of combined stresses. Thus, the reported findings indicate that resistance of Leccino to Xf could be linked to its lower resistance to water stress, probably leading to the activation of alternative defense pathways that support the plant in Xf response.

8.
BMC Plant Biol ; 18(1): 238, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30326849

RESUMO

BACKGROUND: Among cereals, durum wheat (Triticum turgidum L. subsp. durum) accumulates cadmium (Cd) at higher concentration if grown in Cd-polluted soils. Since cadmium accumulation is a risk for human health, the international trade organizations have limited the acceptable concentration of Cd in edible crops. Therefore, durum wheat cultivars accumulating low cadmium in grains should be preferred by farmers and consumers. To identify the response of durum wheat to the presence of Cd, the transcriptomes of roots and shoots of Creso and Svevo cultivars were sequenced after a 50-day exposure to 0.5 µM Cd in hydroponic solution. RESULTS: No phytotoxic effects or biomass reduction was observed in Creso and Svevo plants at this Cd concentration. Despite this null effect, cadmium was accumulated in root tissues, in shoots and in grains suggesting a good cadmium translocation rate among tissues. The mRNA sequencing revealed a general transcriptome rearrangement after Cd treatment and more than 7000 genes were found differentially expressed in root and shoot tissues. Among these, the up-regulated genes in roots showed a clear correlation with cadmium uptake and detoxification. In particular, about three hundred genes were commonly up-regulated in Creso and Svevo roots suggesting a well defined molecular strategy characterized by the transcriptomic activation of several transcription factors mainly belonging to bHLH and WRKY families. bHLHs are probably the activators of the strong up-regulation of three NAS genes, responsible for the synthesis of the phytosiderophore nicotianamine (NA). Moreover, we found the overall up-regulation of the methionine salvage pathway that is tightly connected with NA synthesis and supply the S-adenosyl methionine necessary for NA biosynthesis. Finally, several vacuolar NA chelating heavy metal transporters were vigorously activated. CONCLUSIONS: In conclusion, the exposure of durum wheat to cadmium activates in roots a complex gene network involved in cadmium translocation and detoxification from heavy metals. These findings are confident with a role of nicotianamine and methionine salvage pathway in the accumulation of cadmium in durum wheat.


Assuntos
Cádmio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Triticum/genética , Ácido Azetidinocarboxílico/análogos & derivados , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Biomassa , Cádmio/metabolismo , Grão Comestível , Hidroponia , Metionina/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/genética , Brotos de Planta/fisiologia , Triticum/efeitos dos fármacos , Triticum/fisiologia
9.
Plant Physiol Biochem ; 120: 223-231, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29065389

RESUMO

Wheat, the main food source for a third of world population, appears strongly under threat because of predicted increasing temperatures coupled to drought. Plant complex molecular response to drought stress relies on the gene network controlling cell reactions to abiotic stress. In the natural environment, plants are subjected to the combination of abiotic and biotic stresses. Also the response of plants to biotic stress, to cope with pathogens, involves the activation of a molecular network. Investigations on combination of abiotic and biotic stresses indicate the existence of cross-talk between the two networks and a kind of overlapping can be hypothesized. In this work we describe the isolation and characterization of a drought-related durum wheat (Triticum durum Desf.) gene, identified in a previous study, coding for a protein combining features of NBS-LRR type resistance protein with a S/TPK domain, involved in drought stress response. This is one of the few examples reported where all three domains are present in a single protein and, to our knowledge, it is the first report on a gene specifically induced by drought stress and drought-related conditions, with this particular structure.


Assuntos
Genes de Plantas , Proteínas de Plantas , Proteínas Serina-Treonina Quinases , Estresse Fisiológico , Triticum , Desidratação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Triticum/genética , Triticum/metabolismo
10.
Front Plant Sci ; 7: 1686, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27891140

RESUMO

Heat and drought stress have emerged as major constraints for durum wheat production. In the Mediterranean area, their negative effect on crop productivity is expected to be exacerbated by the occurring climate change. Xyloglucan endotransglucosylase/hydrolases (XTHs) are chief enzymes in cell wall remodeling, whose relevance in cell expansion and morphogenesis suggests a central role in stress responses. In this work the potential role of XTHs in abiotic stress tolerance was investigated in durum wheat. The separate effects of dehydration and heat exposure on XTH expression and its endotransglucosylase (XET) in vitro activity and in vivo action have been monitored, up to 24 h, in the apical and sub-apical root regions and shoots excised from 3-day-old seedlings of durum wheat cultivars differing in stress susceptibility/tolerance. Dehydration and heat stress differentially influence the XTH expression profiles and the activity and action of XET in the wheat seedlings, depending on the degree of susceptibility/tolerance of the cultivars, the organ, the topological region of the root and, within the root, on the gradient of cell differentiation. The root apical region was the zone mainly affected by both treatments in all assayed cultivars, while no change in XET activity was observed at shoot level, irrespective of susceptibility/tolerance, confirming the pivotal role of the root in stress perception, signaling, and response. Conflicting effects were observed depending on stress type: dehydration evoked an overall increase, at least in the apical region of the root, of XET activity and action, while a significant inhibition was caused by heat treatment in most cultivars. The data suggest that differential changes in XET action in defined portions of the root of young durum wheat seedlings may have a role as a response to drought and heat stress, thus contributing to seedling survival and crop establishment. A thorough understanding of the mechanisms underlying these variations could represent the theoretical basis for implementing breeding strategies to develop new highly productive hybrids adapted to future climate scenarios.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA